Medications and nutritional supplements often target specific organs or systems. The most effective delivery method is by injection or intravenous drip, both of which transfer substances directly into the bloodstream. When taken orally, medications must pass through the upper digestive system, where they may be degraded. Liposomal encapsulation forms a protective barrier that allows more thorough absorption.
Scientists first became aware of the process during the 1960s, and their discovery ultimately led to new and more effective means of administering drugs internally. Today, it is widely used in the treatment of age-related degenerative conditions affecting vision, stubborn fungal infections, and even some kinds of cancer. Although standard methods of delivery still predominate medically, encapsulation has proven to be a viable alternative.
For a medication to pass through the upper digestive tract without being dissolved, it must be protected by a safe and non-toxic barrier. The substance used to encapsulate these drugs is an organic material that closely mimics human cellular walls, making it safer to ingest. After it has been activated by using one of three common processes, small bubbles of liposomes are formed around the tiny grains of medication.
These individual capsules can be ingested together in a medium, and are shielded from damage until they can be absorbed into the bloodstream via the small intestine. In many cases this process improves the overall therapeutic goal, with the added benefit of fewer side effects. While a significant improvement, this method of delivery does not accommodate all drugs, and works best with water-soluble medications.
Because it involves fewer undesirable reactions than invasive delivery, there are immediate advantages of using this process. Liposomes are bio-compatible and biodegradable, leaving behind no undesirable toxins. They not only survive the onslaught of digestive acids, but are able to function as small time-release ports within the gut. When potentially toxic drugs must be used to fight cancers, fewer sensitive tissues face unwanted exposure.
Even though already proven effective through use, there is a slight down side. Production costs are significantly high, but will likely experience a decline as greater demand influences the market. Seal leakage has been reported in some cases, and oxidation sometimes reduces overall effectiveness. During the process some drugs have experienced a decline in their half-life, and stability issues have occurred, but positive benefits still predominate.
The past decade has seen a transition from strictly medical venue to include delivery of nutritional supplements and cosmetic materials. Anecdotal evidence of an increase in physical well-being associated with administering vitamins and minerals in this way are common. Vitamin C has long been touted as a natural way to combat the effects of upper respiratory infections, and this method is said to provide noticeably better results than pills alone.
Although information highlighting consumer ability to create encapsulated vitamins, minerals, and even herbal extracts is readily available, making high-quality formulations can be costly and involved, and will not effectively combat the normal issues associated with aging. As support and development of this process continues in the medical world, the public will benefit most from it being used in conjunction with health regimens that have already been proven effective.
Scientists first became aware of the process during the 1960s, and their discovery ultimately led to new and more effective means of administering drugs internally. Today, it is widely used in the treatment of age-related degenerative conditions affecting vision, stubborn fungal infections, and even some kinds of cancer. Although standard methods of delivery still predominate medically, encapsulation has proven to be a viable alternative.
For a medication to pass through the upper digestive tract without being dissolved, it must be protected by a safe and non-toxic barrier. The substance used to encapsulate these drugs is an organic material that closely mimics human cellular walls, making it safer to ingest. After it has been activated by using one of three common processes, small bubbles of liposomes are formed around the tiny grains of medication.
These individual capsules can be ingested together in a medium, and are shielded from damage until they can be absorbed into the bloodstream via the small intestine. In many cases this process improves the overall therapeutic goal, with the added benefit of fewer side effects. While a significant improvement, this method of delivery does not accommodate all drugs, and works best with water-soluble medications.
Because it involves fewer undesirable reactions than invasive delivery, there are immediate advantages of using this process. Liposomes are bio-compatible and biodegradable, leaving behind no undesirable toxins. They not only survive the onslaught of digestive acids, but are able to function as small time-release ports within the gut. When potentially toxic drugs must be used to fight cancers, fewer sensitive tissues face unwanted exposure.
Even though already proven effective through use, there is a slight down side. Production costs are significantly high, but will likely experience a decline as greater demand influences the market. Seal leakage has been reported in some cases, and oxidation sometimes reduces overall effectiveness. During the process some drugs have experienced a decline in their half-life, and stability issues have occurred, but positive benefits still predominate.
The past decade has seen a transition from strictly medical venue to include delivery of nutritional supplements and cosmetic materials. Anecdotal evidence of an increase in physical well-being associated with administering vitamins and minerals in this way are common. Vitamin C has long been touted as a natural way to combat the effects of upper respiratory infections, and this method is said to provide noticeably better results than pills alone.
Although information highlighting consumer ability to create encapsulated vitamins, minerals, and even herbal extracts is readily available, making high-quality formulations can be costly and involved, and will not effectively combat the normal issues associated with aging. As support and development of this process continues in the medical world, the public will benefit most from it being used in conjunction with health regimens that have already been proven effective.
About the Author:
When you are looking for information about liposomal encapsulation, you can go to the web pages online here today. Details are available at http://purensm.com now.
No comments:
Post a Comment